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ADMLSSIBILLTY AND WONI,INFAR VOIIERRA ITNITRGRAT BQUATIONS

R. K, Miller

I. Introduction
The purpose of this paper is to study the behavior of

solutions of a nonlincar system

t
(1) x(t) = £(t) + [ a(t,s)(x(s) + g(s,x(s)))ds

o
given certain information concerning the corresponding linear
system

t

(2) y(t) = £(t) + [ a(t,s)y(s)ds.
o

These equations will be studied in the abstract form

(N) x=f+ T(x + g(x))
and
(L) y=£f+ Ty

where x,y and f are elements of a Frechet space %, T! 5 - ¥

is a continuous linear map and g: ¥ — % is a nonlinear map. Let



N

X be o Lincuor subspace of %, Ascume thut (1)) s en
admissible w.or.t, (X,X)  that is for each f e X equalion (L)
admits & solution y € X. The problem is to show that (N) also

has a solution x in X.'

For example, it is casy to give conditions on f, a and
g which insure that equation (1) admits a unique continuous solu-
tion x(t). It is much harder to show that x(t) is bounded on
the interval R+ = {t: 0 =t < w}, This problem may be placed in
the abstract setting above if one defines F = C(R+) (with the
topology of uniform convergence on compact subsets of R+),
X=BC(R) = (p ¢ C(H): ¢ is bounded on R} and

t
(3) Tp(t) = [ a(t,s)p(s)ds, Voe F.

o
The key assumption that (L) is admissible w.r.t. (X,X) means
that for each f in BC(R') the solution y(t) of (2) is in
BC(R'). In other words, one has admissibility if and only if the
linear system (2) is "bounded input - bounded output stable'.

Admissibility has been studied by many authors. The idea
seems to have originated with Massera and Schaffer [1] and has been
applied to integral equations by Corduneanu [2,3] and Antosiewicz
[h]. The results in this paper are closely related to the results
of Corduneanu but are more easily and more widely applicable to

certain problems of the form (1).
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2. Main Resultls
Let % be a Frechet space, that is % is both a vector

space and a complcebe metlric space with metric p  such that

a, vecltor addition and scaler multiplication are
p-continuous, and

b. p is additively invariant, i.e. p(x,y) = p(x-y,0).

Iet X, and X. Dbe linear subspaces of % which admit norms

1 2
M, ana [ll,. Assume
(A1) X; 1is a B-space under the norm HII1 Moreover, ””1 is

stronger than the topology induced from % in the sense that if

lx - x|, 50 as n—->e then x —-x in £,
n i n

(A2) T: & —» % is a continuous linear map such that if I =

identity, map then (I-T): & —» % 1is both one to one and onto,

(A3) fe & and g F - ZF.

Lemma 1, If (Al-3) are satisfied then equation (N) is equivalent

to

——

(V) x =y - Rg(x)

where R =T - (I-T)-l is a continuous linear map of % into %

and y = f - Rf is the solution of (L),




Proof, From the definition of R it follows that (I-R) = (I~T)'l

Thus y = (I-T)~lf = (I-R)f solves {L). Since I - T is continuous,
it is a closed map on F x F.  Thus (I—T)"l is closed, lincar and
everywhere defined on Z, By the closed graph theorem I - R
(and so also R) is continuous on %,

Subtracting Tx from both sides of equation (N) and

applying (I—T)~l one obtains

(11T + (1-7) Trg(x) = (L-R)f + (T-T) lrg(x).

~
)

Since y = (I-R)f and (I-T)-lT = -R this reduces to equation (V).
The entire calculation is reversible so that (V) and (N) are

equivalent., Q.E.D.

Equation (V) is a'variation of constants" form of equation
(N). For the Volterra integral equation (2) the map T is always a
continuous map., The assumption that I - T is one to one and onto
is just the familiar theorem that linear Volterra integral equations

have unique solutions. Moreover, the map R will have the form

t
(4) Rp(t) = J r(t,s)p(s)ds,
(o]

where r(t,s) is the resolvent kernel, i.e. r(t,s) solves the

equation
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t
r(t,s) = -a(t,s) + [ a(t,u)r(u,s)dau.
s
Once the variation of constants equation (V) is oblained,
it is easy to apply various fixed point theorems to (V). First
consider contraction maps. The next definition and Lemma follow

Corduneanu [2],

Definition 1, Let (Al-2) be satisfied. Then the pair (X,,X;) 1is

called admissible w.r.t. the map R if and only if for each f e X,

Rf € X2.

This admissibility is easily seen to be equivalent to the

assumption that for each f in X, the solution y of (L) is in

1

in the special case where X, = X_,

X 1 2

2

Lemma 2, If (Al-2) hold and if (Xl’XQ) is admissible w.r.t. R

then R 1is continuous as a linear map of Xy into X5s that is

IRl = sup (lIRfll,2 Nl = 1) < o

Proof, Using the continuity of R as a map of % into ¥ and

assumption (Al) the conclusion follows immediately by the closed

graph theorem. Q.E.D.

Theorem 1, Suppose (Al-3) are satisfied and in addition




(M) v eX,, e X, 2 X ad (X,%,) is adminsible w.r.t. R,

(AD) There exists >0 and r(0 <r £ 4w) such that if

———

|
%It

z, w ¢ X, with Hz”e, Hwﬂ2 < r then |lg(z) - g(w)‘!ll o) X

It okl <1 end ir Iyl -+ IRlfe(0)], = r(1-or]) then eguation

(N) has a unique solution x e X, such that HxH2 £ r,

Proof, Under these conditions it is easy to see that the right

hand side of equation (N) defines a contraction mapping on the set

(z € X IzH2 s r}. Q.E.D.

2.

Theorem 2, TLet (Al-l) be satisfied and assume in addition

(A6) For each e > O there exists & > 0 such that if

lzll,, I, s & then lla(z) - gl 5 elzy - 2.

If g(0) = 0 then for each sufficiently small r > O there exists

n > 0 such that if Hy”2 £ 1 then equation (N) has a unique solution

x € X, with Hx”2 <r,

Proof. Pick €, >0 such that efR| <1 end pick 8 >0 such

1 1
that |g(z) - g(w)ll; = ellz-wl, if Izl v, s 8. 1f 0<r =8

and if 1 = r(l-elHRH) then the two inequalities

iRl = e Rl <1, yl, s r(1-¢|R])



of the¢ lagt theorom arce saticlicd., Q.M.D.

If Xl 2 Xe, Theorem 2 implies the following rcsult,

Corollary 1. TLel (Al-U) and (AG) be sidisCied, If g(0) = O then ~

for cach sufficienlly smull » > 0 there exicsts 1 > 0 such that

E£ £ eX

, and Hfﬂl < 1 then equation (N) hrs a unique solubion

x € X, with Hx”l Sy,

Proof. since y = (I-R)T, [|lyll; = (1+HRH)Hle. thus  lyll; is

small if “f”l is small, Q.E.D.

As an application of Theorem 2 and Corollary 1 we note
that all of the perturbation results in [5] and [6] are special
cases. The various assumptions on the resolvent r(t,s) are

simnly conditions which insure admissibility.




5. The Schauwler Theorem

A convex Frechet space is a Frechet space % such thai
every ncighborhooldl of the origin contuing a convex subneighborhood,
The only property of a convex IFrechet space which will e needed

here is that the Schauder IMixed TVoint Theorem is truc in such

spaces,

Theorem 3, (Al-4) are satisfied, & is a convex Frechet spoce

and the map R: ¥ & is a compact operator For any r > 0

define S, (V) = (x e X! IxHi s r) and let §i(r) be the

St mm—— -

F-closure of Si(r). Supposc for some positive numbers r and s,

¢ = e °.n §..t
gl S(r) »8,(s) F-continuously. If y eX, and if hyde +

—————

IRlls s r then equation (N) has at least one solution x e X, with

r.

A

||Xi|2

Proof, For any ¢ in §_(r) define Mp =y - Rg(p). The

assumptions easily imply that M} §é(r) —>82(r) C S,(r) with M
H-continuous. It remains to show that M(§é(r)) is precompact
in %,

First note that the set W= (g(¢): 9 € S,(r)) is F-
bounded, Indeed, let U be any F~neighborhood of the origin,
Since ””l is stronger than the %-topology there exists a
number 5 > O such that if H@Hl <8 then ¢ ¢ U, For any «

with |a| s 8/s if @ eWC S (s) then Hocpnl = lal”q)(ll s as s 5,



Thercfore, o C. U it [a| < &/s, i.e. W ds Fvouwled,

gince W ds bounded and R FF - & is compacl, R(W) =
M(Eé(r)) is precompaet. By Schauder's theorem M has a fixed
point x ¢ E,(r). Since x = Mx end ME Sy(r) -8 /) it follows
that x ¢ Sg(r). Q.1.D.

Notice that if R dis the integral operator (4) then
rather weak assumptions on a(t,s) easily imply the compactness of
R on & = C(R%). At the same time Tor most subspaces X, the

i

compactness of R as a map of Xl into X2 is usually very
difficult to prove (and is often false). Thus Theorem 3 secms to
be a very natural and convenient application of Schauder's theorem
for Volterra equations., Theor=m 3 is motivated by and is closely
related to Theorem 2 of Corduneanu [2].

As an application of Theorem 3 we shall give a generalization

2
of an L -stability theorem of the type studied by Sandberg [T7] and

Zames [3]. Consider a system on n equations of the form

t

(5) x(t) = £(t) + [ a(t-s)g(s,x(s))ds. (b 2 )
o

Concerning (5) we assume

(K1) g(t,x) is measurable in (t,x) for t 2z O and all x and

g(t,x) is continuous in x for each fixed t.

(K2) There exists y >0 and a nonsingular, constant, n by n
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matrix A such that [A'lg(t,x) - x| 2 ylx] for all (%,x).

(k3) a(t) is Ll(R+) and the determinant det (T-a¥(s)A) # 0
for Re s 2 0, Here I = identily matrix and % denotes the
Laplace trunsforn,
(k) £ is in LR(Rf).
L
For any matrix W let A(W) = max {|A[?. N is an eigen-

value of W'W) be the spectral norm of W, Deline
o = sup (A((I-a*(iw)A}'la*(iw)A)Z o < W< o},

Theorem 4, If (5) satisfies (Kl-%) and if yu <1 then equaticn

(5) has a solution x(t) e LE(R+) with x| 5 = (L+a)(1-ay)’lufu o
- L L

Proof, Let % be the space of locally L2 functions on R+ with

the topology of L2 convergence on compact subsets of R+. Let
2
X=X =X,=1L (R"). Equation (3) may be written abstractly as

Xx=7T+ TAh(x)] = £+ T[x + (A" h(x) - x}]

t

where Tp(t) = [ a(t-s)Ap(s)ds. Assumption (K3) implies that

a(t-s)A has a resolvent r(t-sz) of class Ll(R+), c.f. Paley and
Weiener [9, p. 60]. Thus the pair (L?(R+), Le(R+)) is admissible

wer.t, the operator R where




1l

t
Rp(t) = [ r(t-g)o(s)ds. (Lt z 0).
c

The Parseval equation and the convolution theorem for
12_Fourier transforms imply ||Rl| 5 o
; , -1
In Theorem 3 let s = 1, r = (Lra)l|fl (L-ar) and let

g(p) = A_lh(@) - ¢@. Clearly Eé(r) = Se(r) and if ¢ € Sg(r)

then g(p) e L2(R+) wvith |g(@)| s ¢/l By Theorem 3 equation (5)
has a s.lution x € L2(R+) with ||x| = r. Q.E.D.




4, Extensions and Comparisons.,

Cordunecanu [5] studied the nonlinear equation
x = I+ Tx + h(x) (6)

on the Frech:t space & = C(R'). Here h! ¥ > & is a nonlinear
functional, If the pair (XQ’Xl) is admissible w.r.t. the map T
the equation (N) above may be treated using his methods by setting
h(x) = Tg(x). The problem with this approach is that in many in-
teresting applications the pair (Xé,Xl),is not admissible w.r.t.
the map T,

Both points of view may be combined by studying nonlinear

équations of the form

x=7f+ T(x+ gx)) + h(x) (7)

where (Al-3) are true and hi % - %, The variation of constants

formula (V) implies that (7) is equivalent to
x = (I-R)f + (I-R)h(x) - Rg(x). (8)
Various conditions may be given to insure that (8) has a solution

in X2° For example, the method of proof of Theorem 2 is easily

applied in order to prove the following theoren,



Theorem 5. Let (1I1-3) be satisfied, L € X

f ot et

and let g,h: X, 2 X

L 1
both satisfy (HM). If (X,,X,) is odmissible w.r.t. both R and

I - R then for each sufficiently small e > 0 there exists >0

such thet if £l s n then (7) has a solution x e X, with

2 e——

”xllg = €.
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